Poly(metal methylphenylphosphinates) from Metal **Chloride** Solutions in Methyl Methylphenylphosphinate*

CHESTER M. MIKULSKI, JOSEPH UNRUH, RICHARD RABIN

Department of Chemistry and Physics, Beaver College, Glentide, Pa 19038, U.S.A.

FRANK J. IACONIANNI, LOUIS L. PYTLEWSKI

Department of Chemistry, Drexel University, Philadelphin, Pa. 19104, U.S.A.

NICHOLAS M. KARAYANNIS

Amoco Chemicals Corporation, Naperville, Ill. 60540, U.S.A.

Received September 11,1979

The family of complexes known as poly(meta1 phosphinates) consists of metal ions linked in a linear chainlike fashion by diorganophosphinato bridges [2]. Structures involving single-, double- or triplephosphinato bridges, such as I-III, have been established for these complexes (L = RR'POO⁻; R,R' = alkyl or aryl) $[2-8]$, while more complicated polymeric structures, with cross-linked linear units of type I or II, have been postulated for some $ML₂$ complexes [9]. Inorganic polymers of the preceding types, and especially Cr^{3+} complexes, can be used for the production of coherent films with interesting mechanical properties [10]. For this particular application, special synthetic techniques were developed for poly(metal phosphinate) powders that can be extruded into film [11, 12].

Essentially, the methods of preparation of M(OOPR' R _n complexes are based on the reaction of a metal salt (e.g., chloride, carbonate, acetate) or carbonyl with the diorganophosphinic acid or its sodium salt in aqueous or organic media $[2, 9, 11-17]$. However, it was also demonstrated that thermal decomposition of the 1:2 adduct of $CoCl₂$ with ethyl diethylphosphinate $((C_2H_5O)(C_2H_5)_2P=O)$ leads eventually to the formation of $Co(OOP(C_2H_5)_2)_2$ [18].

These laboratories have quite extensively studied the corresponding poly(meta1 phosphonates) and poly(metal phosphates) (*i.e.*, $M(OOP(OR')R)_{n}$ and $M(OOP(OR)₂)_n$, respectively) [19-22]. These complexes were conveniently prepared in practically quantitative yields, by heating solutions of metal chlorides in an excess of a neutral phosphonate or phosphate alkylester [19-241. We were interested in preparing and characterizing the corresponding poly- (metal phosphinates), and especially those with metal ions that have not been isolated or studied previously $(e.g., Sc^{3+}, Y^{3+}, Ln^{3+}, Ti^{3+}, V^{3+}, Th^{4+}, U^{4+}, Ga^{3+}, ...$ I³"). We employed the synthetic method used for the polymeric phosphonate or phosphate complexes $[19-22]$, *i.e.*: A solution of a metal chloride in excess methyl methylphenylphosphinate was heated at gradually increasing temperatures, until precipitation occurred. In twenty six cases investigated so far, the yield of the poly(metal methylphenylphosphinate) $([M(mpp)_n]_x)$ precipitated was practically quantitative $(\sim]100\%$ of the theoretical). The temperature of precipitation varied in the $50-220$ °C range, depending on the metal ion used. By carefully controlling the rate of temperature increase $(1-2^{\circ})$ per min), we were able to obtain precipitates consisting of free-flowing powders, with approximately uniform particle size distribution. Whenever the temperature of the metal chloride solution in methyl methylphenylphosphinate was increased at a rapid rate, the precipitates were apparently higher polymers, consisting of membrane- or rubber-like materials.

The formation of $[M(mpp)_n]_x$ complexes presumably proceeds by a series of reactions, *i.e.*, formation of the MCI_n adduct with the neutral ester (mmpp) (IV), with the ligand acting as unidentate $(P=O$ oxygen-bonded) $[19-23, 25]$; involvement of the methoxy oxygen of mmpp in coordination to a neighboring metal ion, resulting in the formation of a mmpp-bridged intermediate, such as V, at elevated temperatures; and, finally, elimination of $CH₃Cl$ from V and precipitation of the $[M(mpp)_n]_x$ polymer $[19-24]$:

 $MCl_n + m(CH_3O)C_6H_5(CH_3)P = O \rightarrow$

^{*}See ref. 1. **V**

Reactions of type (1) can be also carried out by using any liquid or low-melting diorganophosphinate alkylester, but would not be applicable with the corresponding arylesters, since aryl carbon-oxygen bond cleavage does not occur by interaction of metal halides with aryloxyphosphoryl compounds [26] . Up to now, complexes of mpp with the following metal ions have been prepared: M^+ : $M = Li$, Na, K, Rb; M^{2+} : M_{\odot} C₀, S_n, M_n, F_e, C₀, N_i, C₁, Z_{n} , Cd_c $M^{3+} \cdot M =$ $A_1, B_2, C_3, D_1, D_2, T_1, V_2, C_2, T_2, C_3, T_3, T_4, T_5, C_4, T_6, T_7, T_8, T_9, T_{10}^4$ Most of these complexes are anhydrous; however, the Li⁺, Na⁺, Ca²⁺ and Ni²⁺ complexes were precipitated in the form of their dihydrates, which can be dehydrated by heating to $100-150$ °C, under reduced pressure. The infrared spectra of all the metal complexes exhibit the characteristic ν_{POO} asymmetric and symmetric vibrational modes at 1170-l 110 and 1050-1010 cm⁻¹, respectively [9, 19-22, 27, 28]. With a few exceptions $(Mn^{2^+}5.82; Fe^{3^+}5.91; Dy^3)$ 11.23 μ B), the new paramagnetic metal ion complexes exhibit subnormal ambient temperature μ_{m} moments, as follows (μ_{D}) : T_i^{3} ⁺ 1.65; V^{3} ⁺ $2.47; C_1^3$ $2.6; E_2^2$ $4.52; C_2^2$ $4.29; N_i^2$ $2.5; C_1^2$ $11, 56$
 $56, 11⁴$ 3.00 (the latter value is low for octacoordinated U^{4+} [21, 22]). It is well established that many polymeric paramagnetic diorgano-phosphinato, -phosphonato or -phosphate metal complexes exhibit subnormal room temperature magnetic moments [7, 9, 19-221, while a number of studies of magnetic susceptibility variation with temperature were indicative of antiferromagnetic exchange interactions, arising by the linear, chainlike bi- or poly-nuclear configurations of these complexes [7,29].

Characterization studies of the new metal complexes, as well as attempts at the syntheses of mpp complexes with other metal and oxometal ions $(e.g.,$ $Si⁴⁺, Ge⁴⁺, Sn⁴⁺, NbO³⁺, TaO³⁺, MoO²⁺, WO³⁺, UO²⁺,),$ are in progress and will be reported in a series of for the progress and will be reported in a series of 3^+ and M^{4+} complexes herein reported ($v =$ band assignments and electronic spectra) are suggestive of hexa- and octa-coordinated configurations, respectively $[19-22]$; the $[M (mpp)_3]_x$ complexes are presumably of structural type III, whilst for the $[M(mpp)_4]_{\mathbf{x}}$ compounds, a chainlike structure characterized by $-M-(mpp)₄-M-(mpp)₄$ sequences, although not unlikely, might result in too severe a steric interference between the four bridging ligands; a possible alternative would be a polymeric structure involving $-M-(mp)$ ₃ $-M-(mp)$ ₃ $-$ sequences, with one termin (inpp)3 in (inpp)3 sequences, while the term $[30]$. Becarding the M^{2+} complexes, some are apparently tetracoordinated $(M = Mg, Sn, Co, Cu, Zn,$ Cd, as well as the dihydrated $Ca²⁺$ complex, which involves exclusively lattice water) of types I or II, while other are hexacoordinated $(M = Mn, Fe, and$ both the anhydrous and dihydrated Ni²⁺ complexes). $[Ni(mpp)₂(OH₂)₂]$ is a linear polymer with two

aqua ligands per Ni²⁺ ion, and the three $[M(mpp)_2]_{\mathbf{x}}$ $(M = Mn, Fe, Ni)$ anhydrous complexes are presumably highly cross-linked polymeric species [9]. It i is a signal i of $\frac{1}{2}$ and $\frac{1}{2}$ complex fluoresces with a pinkish hue under UV excitation, as would be expected for a fluorescent octahedral manganous compound [3 l] . Finally, chainlike structures with linear -M-mpp-M-mpp- sequences are also likely for the alkali metal complexes [2 l] .

References

- 1 C. M. Mikulski, J. Unruh, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, *Abstracts, the 178th National Meetg., Am. Chem. Sot., Washington, D. C.,* Sept. 9-14, 1979; No. INOR 21.
- B. P. Block, Inorg. *MacromoL Rev., 1,* 115 (1970). F. Giordano, L. Randaccio and A. Ripamonti, *Acta*
- *Crystallogr., B25,* 1057 (1969). V. Giancotti, F. Giordano and A. Ripamonti, *Makromol.*
- Chem., 120, 96 (1968); 154, 271 (1972).
- R. Cini, P. Colamarino, P. L. Orioli, L. S. Smith, P. R. Newman, H. D. Gillman and P. Nannelli, *Inorg. Chem., 16, 3223 (1977).*
- *6* P. Colamarino. P. L. Orioli, W. D. Benzinner and H. D. Gillman, *Inorg. Chem., 15*, 800 (1976).
- *7* J. C. Scott, A. F. Garito, A. J. Heeger, P. Nannelli and **8** *B* (1986, *B*, *12*, *32)* (1973),
B (*B* (*B* (*B*) *D* (*M*₂₀₀₀), A. J. Herger, A. F. Garita, H. D. Gillman, *Phys. Rev., B, 12, 356 (1975);* T. S. Wei, H. D. Gillman, *Phys. Rev.*, *B*, 12, 356 (1975); T. S. Wei, J. C. Scott, A. F. Garito, A. J. Heeger, H. D. Gillman and P. Nannelli, *ibid., B, 12, 5297 (1975).*
- *9* H. D. Gillman, *Inorg.* Chem., 13, 1921 (1974); H. D. H. D. Gillman and P. Nannelli, J. *Chem. Phys., 66, 5248 (1977).*
- 1 U. Gilliam, J. **Appl. Polym. Sci., 16, 917** (1979);
J. V. Gilliam, J. Appl. Polym. Sci., 16, 917 (1979); B. Gillman, *Inorg. Chem.*, *19*, 1921 (1977), 11, D.
Berger, and J. J. Eichelberger, *ibid., 15, 840 (1976)*.
- L. L. Towle and P. Nanneli, *ASLE nans., 17, 224* L. L. Towle and P. Nanneli, *ASLE Trans.*, 17, 224 (1974).
- 11 A. J. Saraceno, J. P. King and B. P. Block, J. *Poiym. Sci., B,* 6, 15 (1968).
- P_1 Q_1 Q_2 Q_3 Q_4 Q_5 Q_7 Q_8 Q_9 Q_9 $199m$, Chem, 291 , 2971 (1773). Sprout, Jr., N. G. Peschko and G. G. Dahl, J. *Polym. Sci., Sprout, Jr., N. G. Peschko and G. H. Dahl, J. Polym. Sci., Polym. Chem. Ed., 11, 2691 (1973).*
- 14 *S.* H. Rose and B. P. Block, J. Polym. *Sci., A-I,* 6, 573, **A-life A-l,** *D***, Olyman and D. I. Drock**, *J*, *I Olym.* Bel., *i. 0, 2049* A-1, 9, 3027 (1971); *ibid.*, *Polym. Chem. Ed.*, 13, 2849 (1975).
- 15 K. D. Maguire and B. P. Block, J. Polym. *Sci., A-I,* 6, 583 (1966); A. J. Saraceno and B. P. Block, *Inorg.* Chem., 3, 1699 (1964).
- 16 3. J. Pitts, M. A. Robinson and S. I. Trotz, J. Inorg. Nucl. 1397 (1968).
- 17 V. V. Korshak, A. M. Polyakova, 0. V. Vinogradova, K. Chem., 30, 1299 (1968); 31, 3685 (1969).
- $\frac{1}{\Gamma}$ \mathbf{v} . Roisilan, A. M. Folyanova, O. \mathbf{v} , \mathbf{v} miogradova, R. *Akad. Nauk SSSR, Ser. Khim., 642 (1968);* V. V. Akad. Nauk SSSR, Ser. Khim., 642 (1968); V. V.
Korshak, S. V. Vinogradova and O. V. Vinogradova, *Vysokomol. Soedin., 168, 214 (1974).* D. D. Schmidt and J. T. Yoke, Inorg. *Chem., 9,* 1176
- (1970).
N. M. Karayanis, C. M. Mikulski and L. Pythewski $(19, 5)$
- *Inorg. Chim. Acta Rev., 5, 69 (1971).*
- *20 C.* M. Mikulski, N. M. Karyannis, M. J. Strocko, L. L. M. Mikulski, N. M. Karyannis, M. J. Strocko, L. L. Pytlewski and M. M. Labes, Inorg. Chem., 9, 2053 (1970).
- M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. tlewski and M. M. Labes, *Inorg. Chim. Acta*, 4, 455 (1970); 5, 357 (1971); Z. anorg. allg. Chem., 384, 267
(1971). $(19/1)$.
- M. Mikulski, L. L. Pytlewski and N. M. Karayannis, J. *Inorg. Nucl. Chem., 36, 971 (1974); Z. anorg. allg. Chem., 403, 200 (1974). 23 Chem., 403, 200 (1974).* $\frac{1}{2}$
- Gutmann and K. Fenkart, *Monatsh. Chem.*, 99, 1452 (1968); V. Gutmann and G. Beer, *Inorg. Chim. Acta*, 3, 87 (1969). *24* J. J. Kokalas, D. N. Kramer, F. Block and R. Levin,
- J. Kokalas, D. N. Kramer, P.
- 25 C. M. Mikulski, J. Unruh, L. L. Pytlewski and N. M. M. Mikulski, J. Unruh, L. L. Pytlewski and Karayannis, *Transition Met. Chem.*, 4, 98 (1979).
- 26 C. M. Mikulski, L. L. Pytlewski and N. M, Karyannis, *Inorg. Chim. Acta, 32, 263* (1979).
- 27 L. C. Thomas and R. A. Chittenden, Spectrochim. Acta, 20, 467, 489 (1964); 21, 1905 (1965); 26A, 781 (1970). *28* J. R. Ferraro, J. *Inorg. Nucl.* Chem., 24, 475 (1962).
- J. R. Ferraro, *J. Inorg. Nucl. Chem., 24, 415* (1962).
- 29 S. L. Lambert, T. R. Felthouse and D. N. Hendrickson, *30 Inorg. Chim. Acta, 29, L223* (1978).
- M. Mikulski, I. Itan, L. L. Pytlewski Karayannis, J. Inorg. Nucl. Chem., in press.
- 31 D. M. L. Goodgame and F. A. Cotton, J. Chem. Soc., 3735 (1961).